Future wind deployment scenarios for South Africa

CSIR Energy Centre

WindAc Africa, 14-15 November 2017 Cape Town, South Africa

Jarrad G. Wright **Dr Tobias Bischof-Niemz Robbie van Heerden**

JWright@csir.co.za Tobias.Bischof-Niemz@enertrag.com RPvHeerden@csir.co.za

Joanne Calitz

JRCalitz@csir.co.za **Crescent Mushwana**

cmushwana@csir.co.za

our future through science

- 1 Background
- 2 Approach
- 3 Scenarios
- 4 New research outcomes
- 5 Focus on wind
- 6 Conclusions

1 Background

- 1.1 Global wind
- 1.2 South African context
- 2 Approach
- 3 Scenarios
- 4 New research outcomes
- 5 Focus on wind
- 6 Conclusions

1 Background

1.1 Global wind

- 1.2 South African context
- 2 Approach
- 3 Scenarios
- 4 New research outcomes
- 5 Focus on wind
- 6 Conclusions

Globally, wind deployment increased significantly in early 2000s and has since had strong deployment levels of 40-60 GW/yr

Global annual new wind capacity (2000-2016)

Wind capacity has grown at >20% per year since 2000 with increasingly significant role for wind to meet energy requirements globally

Global annual new wind capacity (2000-2016)

- 1 Background
 - 1.1 Global wind
 - 1.2 South African context
- 2 Approach
- 3 Scenarios
- 4 New research outcomes
- 5 Focus on wind
- 6 Conclusions

Actual tariffs: Reductions in tariff for new, wind, solar PV and CSP with wind reduction of ~60% in just 4 years

Results of South African Department of Energy REIPPPP

Notes: Assumed USD:ZAR = 14.71; For CSP Bid Window 3 and 3.5, the weighted average of base and peak tariff is indicated, assuming 50% annual capacity factor and 64%/36% base/peak tariff utilisation ratio; BW = Bid Window; Sources: Department of Energy's publications on results of first four bidding windows http://www.energy.gov.za/IPP/List-of-IPP-Preferred-Bidders-Window-three-04Nov2013.pdf; http://www.energy.gov.za/IPP/Renewables_IPP_ProcurementProgram_WindowTwoAnnouncement_21May2012.pptx; http://www.energy.gov.za/IPP/Renewables_IPP_ProcurementProgram_WindowTwoAnnouncement_21May2012.pptx">http://www.energy.gov.za/IPP/Renewables_IPP_ProcurementProgram_WindowTwoAnnouncement_21May2012.pptx; http://www.energy.gov.za/IPP/Renewables_IPP_ProcurementProgram_WindowTwoAnnouncement_21May2012.pptx">http://www.ipprenewables.co.za/gong/widget/file/download/id/279; StatsSA on CPI; CSIR analysis

Actual tariffs: Reductions in tariff for new, wind, solar PV and CSP with wind reduction of ~60% in just 4 years

Results of South African Department of Energy REIPPPP

Notes: Assumed USD:ZAR = 14.71; For CSP Bid Window 3 and 3.5, the weighted average of base and peak tariff is indicated, assuming 50% annual capacity factor and 64%/36% base/peak tariff utilisation ratio; BW = Bid Window; Sources: Department of Energy's publications on results of first four bidding windows http://www.energy.gov.za/IPP/List-of-IPP-Preferred-Bidders-Window-three-04Nov2013.pdf; http://www.energy.gov.za/IPP/Renewables_IPP_ProcurementProgram_WindowTwoAnnouncement_21May2012.pptx; http://www.energy.gov.za/IPP/Renewables_IPP_ProcurementProgram_WindowTwoAnnouncement_21May2012.pptx">http://www.energy.gov.za/IPP/Renewables_IPP_ProcurementProgram_WindowTwoAnnouncement_21May2012.pptx; http://www.ipprenewables.co.za/gong/widget/file/download/id/279; StatsSA on CPI; CSIR analysis

From November 2013 to Jun 2017, 1 568 MW of wind, 1 474 MW of large-scale solar PV and 200 MW of CSP became operational in RSA

our future through science

Wind supplied 3.7 TWh (1.6%) of South Africa's system load in 2016 (a growing share from just 0.4% in 2014 and 1.1% in 2015)

Evolution of wind energy contribution to South African electricity mix (2014-2016)

1 Background

2 Approach

- 3 Scenarios
- 4 New research outcomes
- 5 Focus on wind
- 6 Conclusions

The capacity expansion planning exercise fills the supply gap in the least-cost manner, subject to constraints imposed

Energy supplied to the South African electricity system from existing plants (2016-2050)

Note: Energy from existing generators is shown representatively; All power plants considered for "existing fleet" that are either Existing in 2016, Under construction, or Procured (preferred bidder) Sources: DoE (IRP 2016); Eskom MTSAO 2016-2021; StatsSA; World Bank; CSIR analysis

Approach currently optimises the generation component of total system cost (the dominant component) and is technology agnostic

¹ FOM = Fixed Operations and Maintenence costs; ² VOM = Variable Operations and Maintenence costs; ³ Typically referred to as Ancillary Services includes services to ensure frequency stability, transient stability, provide reactive power/voltage control, ensure black start capability and system operator costs.

Approach currently optimises the generation component of total system cost (the dominant component) and is technology agnostic

¹ FOM = Fixed Operations and Maintenence costs; ² VOM = Variable Operations and Maintenence costs; ³ Typically referred to as Ancillary Services includes services to ensure frequency stability, transient stability, provide reactive power/voltage control, ensure black start capability and system operator costs.

Approach currently optimises the generation component of total system cost (the dominant component) and is technology agnostic

¹ FOM = Fixed Operations and Maintenence costs; ² VOM = Variable Operations and Maintenence costs; ³ Typically referred to as Ancillary Services includes services to ensure frequency stability, transient stability, provide reactive power/voltage control, ensure black start capability and system operator costs.

- 1 Background
- 2 Approach
- 3 Scenarios
- 4 New research outcomes
- 5 Focus on wind
- 6 Conclusions

A range of scenarios investigated including business-as-usual, leastcost and decarbonised – with new outcomes the focus

Reference	Scenario name	Demand	Constraints	Technology costs	
BAU-Hi	Business as Usual	High (Fig. 14)	PPD Moderate (Fig. 15); Annual RE limit*	Tab. A.3-A.5	
LC-Hi	Least-cost	High (Fig. 14)	PPD Moderate (Fig. 15)	Tab. A.6-A.8	
DC-Hi	Decarbonise	High (Fig. 14)	Decarbonise (Fig. 15)	Tab. A.6-A.8	Part of previous research ¹ (See link below if interested)
BAU-Lo	Business as Usual	Low (Fig. 14)	PPD Moderate (Fig. 15); Annual RE limit*	Tab. A.3-A.5	
LC-Lo	Least-cost	Low (Fig. 14)	PPD Moderate (Fig. 15)	Tab. A.6-A.8	
LCP-Hi	Least-cost (plausible)	High (Fig. 14)	PPD Moderate (Fig. 15)	Tab. A.9-A.11	
LCP-Lo	Least-cost (plausible)	Low (Fig. 14)	PPD Moderate (Fig. 15)	Tab. A.9-A.11	New research outcomes

* Annual limit on new-build wind (1.8 GW) and solar PV (1 GW).

- 1 Background
- 2 Approach
- 3 Scenarios
- 4 New research outcomes
 - 4.1 Key input assumptions
 - 4.2 Outcomes and discussion
- 5 Focus on wind
- 6 Conclusions

- 1 Background
- 2 Approach
- 3 Scenarios
- 4 New research outcomes
 - 4.1 Key input assumptions
 - 4.2 Outcomes and discussion
- 5 Focus on wind
- 6 Conclusions

FOR FULL SET OF TECHNOLOGY COST INPUT ASSUMPTIONS

our future through science

Technology cost characteristics fully modelled – taken from Draft IRP 2016 unless otherwise specified

¹ Lifetime cost per energy unit is only presented for brevity. The model inherently includes the specific cost structures of each technology i.e. capex, Fixed O&M, variable O&M, fuel costs etc. ² Changing full-load hours for new-build options drastically changes the fixed cost components per kWh (lower full-load hours → higher capital costs and fixed O&M costs per kWh); Assumptions: Average efficiency for CCGT = 55%, OCGT = 35%; nuclear = 33%; IRP costs from Jan-2012 escalated to May-2016 with CPI; assumed EPC CAPEX inflated by 10% to convert EPC/LCOE into tariff; Sources: IRP 2013 Update; Doe IPP Office; StatsSA for CPI; Eskom financial reports for coal/diesel fuel cost; EE Publishers for Medupi/Kusile; Rosatom for nuclear capex; CSIR analysis

Sources: CSIR analysis

Two demand forecasts considered (high and low) – from Draft IRP 2016

Two demand forecasts considered (high and low) – from Draft IRP 2016

Sources: DoE; EIUG; CSIR analysis

Electricity sector CO₂ emissions trajectories constrain the model over time to 2050 – from Draft IRP 2016

PPD = Peak Plateau Decline

Sources: DoE (IRP 2010-2030 Update); StatsSA; CSIR analysis

Solar PV: Future cost assumptions for solar PV aligned with latest projections from BNEF (≈70% reduction by 2040)

Notes: REIPPPP = Renewable Energy Independent Power Producer Programme; BW = Bid Window; bid submissions for the different BWs: BW1 = Nov 2011; BW2 = Mar 2012; BW 3 = Aug 2013; BW 4 = Aug 2014; BW 4 (Expedited) = Nov 2015 Sources: StatsSA for CPI; South African Department of Energy (DoE); DoE IPP Office; Draft IRP 2016; BNEF; IRENA; CSIR analysis

Wind: Future cost assumptions for solar PV aligned with latest projections from BNEF (≈40% reduction by 2040)

Notes: REIPPPP = Renewable Energy Independant Power Producer Programme; BW = Bid Window; bid submissions for the different BWs: BW1 = Nov 2011; BW2 = Mar 2012; BW 3 = Aug 2013; BW 4 = Aug 2014; BW 4 (Expedited) = Nov 2015 Sources: StatsSA for CPI; IRP 2010; South African Department of Energy (DoE); DoE IPP Office; CSIR analysis

Previous CSIR cost input assumptions for CSP (same cost decline as per IRP 2010)

Notes: REIPPPP = Renewable Energy Independent Power Producer Programme; BW = Bid Window; bid submissions for the different BWs: BW1 = Nov 2011; BW2 = Mar 2012; BW3 = Aug 2013; BW4 = Aug 2014; BW4 (Expedited) = Nov 2015 Sources: StatsSA for CPI; IRP 2010; South African Department of Energy (DoE); DoE IPP Office; CSIR analysis

Stationary storage (Li-Ion): Assumed 200 \$/kWh (2030), 150 \$/kWh (2040), 100 \$/kWh (2050) – from BNEF, IRENA

Demand shaping can provide ≈24 GW/3 GW (demand increase/decrease) with ~70 GWh/d of dispatchable energy by 2050

Property	Unit	2016-2019	2020	2030	2040	2050
Population	[mln]	55.7 - 57.5	58.0	61.7	64.9	68.2
Number of HHs	[mln]	16.9 - 18.1	18.5	22.4	26.0	27.3
Residents per HH	[ppl/HH]	3.29 - 3.17	3.13	2.75	2.50	2.50
HHs with EWH	[%]	28 - 33	34	50	75	100
HHs with EWH	[mln]	4.7 - 5.9	6.3	11.2	19.5	27.3
Demand shaping adoption	[%]	-	2	25	100	100
Demand shaping	[TWh/a]	-	0.4	5.4	28.3	26.4
Demand shaping	[GWh/d]	-	1.1	14.9	77.4	72.3
Demand shaping (demand increase)	[MW]	-	371	4 991	25 970	24 265
Demand shaping (demand decrease)	[MW]	-	46	620	3 226	3 015

Electric vehicle demand shaping can provide ~96 GW/4.2 GW (demand increase/decrease) with ~100 GWh/d daily dispatchable energy 2050

		2046 2040	2020	2020	22.42	2050
Property	Unit	2016-2019	2020	2030	2040	2050
Population	[mln]	0 - 0	58.0	61.7	64.9	68.2
Number of motor vehicles	[mln]	7 - 8.2	8.5	12.3	16.2	20.5
EVs adoption	[%]	0 - 0	1.5	8.1	28.5	48.9
Number of EVs	[mln]	0 - 0	0.1	1.0	4.6	10.0
EVs energy requirement	[TWh/a]	-	0.5	3.7	17.1	37.0
EVs energy requirement	[GWh/d]	-	1.3	10.1	46.8	101.4
EVs (demand increase)	[MW]	-	100	4 600	44 300	95 800
EVs (demand decrease)	[MW]	-	100	400	2 000	4 200

- 1 Background
- 2 Approach
- 3 Scenarios
- 4 New research outcomes
 - 4.1 Key input assumptions
 - 4.2 Outcomes and discussion
- 5 Focus on wind
- 6 Conclusions

LC (high-demand) with updated technology cost assumptions – flexible capacity with more solar PV/wind and.... storage is deployed

Scenario: Least-cost - new outcomes (High Demand)

¹ Includes an assumed 2 USDc/kWh (0.30 R/kWh) for transmission, distribution and customer services

LC (low-demand) with updated technology cost assumptions – similar to high demand... just at a smaller scale

Scenario: Least-cost - new outcomes (Low Demand)

¹ Includes an assumed 2 USDc/kWh (0.30 R/kWh) for transmission, distribution and customer services

CO2 emissions trajectory is never binding and water use declines as coal fleet decommissions for high and low demand

Scenario: Least-cost (new outcomes)

Year

- 1 Background
- 2 Approach
- 3 Scenarios
- 4 New research outcomes
- 5 Focus on wind
- 6 Conclusions

LC optimal to aim for 15-20% wind (≈15-25~GW) by 2030, 35-40% (≈40-60 GW) by 2040 and 45-50% (≈60-85 GW) by 2050

Note: For reference, total energy supplied is shown for each year; ¹ Other RE includes domestic and imported renewable energy. Combining all of these outcomes (previous and new) – a growing wind market is expected... albeit at varying scales of deployment

In least-cost planning outcomes:

2.7-5.1 GW/a (2030-2040)

1.4-2.1 GW/a (2020-2030)

3.3-5.8 GW/a (2040-2050)

- 1 Background
- 2 Approach
- 3 Scenarios
- 4 New research outcomes
- 5 Focus on wind
- 6 Conclusions

Conclusions

Deployment of wind in South Africa is primarily as a result of:

- Favourable technology costs;
- A world-class wind resource; and
- Large geographical land area.

Any new-build capacity in South Africa should include wind as part of the energy mix combined with solar PV and flexible supply/demand options

Conservatively (previous outcomes), LC¹ planning outcomes result in wind installed capacity of:

- ≈15-25~GW (2030);
- ≈40-60 GW (2040); and
- ≈60-85 GW (2050).

With plausible reductions in costs of wind, installed wind capacity (new outcomes):

- Similar by 2030, ≈15-25 GW;
- Much higher to 2040, ≈55-70 GW; and
- ≈70-110 GW by 2050.

Consistent and growing build-out of wind capacity with LC¹ deployment of:

- 1.4-2.1 GW/a (2020-2030);
- 2.7-5.1 GW/a (2030-2040); and
- 3.3-5.8 GW/a (2040-2050).