Research and Industry questions to be answered on PV testing

Quality, Characterization, Power Measurement, Securing Performance, Failures and Degradation Effects

Deviation from Rated Power

Critical performance evaluation (measurement) necessary High level of measurement precision required for use in court

Power measurements (sun simulators, outdoor)

LED based systems, Xenon based (mobile)

Systems with Xenon-flasher (laboratory, mobile)

Industry and Investor Support through CSIR: Flash tests before and after LID and after operation (Facilities: Outdoor exposure test stand, Flasher)

Stady state sun simulator

Outdoor Measurements

- Laboratory (single module)
- Field measurements (module, strings)

Measurement Uncertainty and Traceability of Power Measurements

World PV Scale			
	Primary calibration of a reference cell (WPVS)	±0 .5%	
PTB ¹⁾ Calibration laboratory Testing laboratory (TUV Rheinland) Manufacturer Measurement uncertainty	Secondary calibration of a reference cell	± 1.0 - 2.0%	
	Calibration of a reference module	± 1.8 - 2.5%	
	Usage of reference modules for flasher adjustment in production	(3.0 - 5.0%)	
Part of measurement uncertainty 1) "The Physikalisch-Technische Bundesanstalt (PTB) is the national metrology institute of Germany"			

Measurement Uncertainty and Traceability of **Power Measurements**

LED based systems, Xenon based (mobile) **PTB**¹⁾ Calibration Calibration laboratory **Testing laboratory** (TUV Rheinland) **Mobile system** Outdoor field measurements Sekundary calibration **PTB**¹⁾ of a reference cell Calibration laboratory Usage of reference cell (often low uncertainity) Outdoor measurement system

for outdoor measurements

5 Workshop CSIR, May 2017 26.05.2017

TÜVRheinland® Precisely Right.

 $\pm 2,0 - 3.0\%$

(6.0 - 7.0%)

Fstimated

Through 'light induced degradation' (LID) initial power changes by a few percent in the course of hours.

Verification of Power Output and Stability is Important for the Return on Investment

New series of standards

Industry and Investor Support by CSIR: Flash tests before and after LID Stabilizsation (Facilities: Outdoor exposure test stand, Flasher)

IEC 61215-1: Power output verification: $P_{max}(Lab) \ge P_{max}(Nameplate)$

(considering measuring uncertainties, production tolerances and LID effects)

IEC 61215-2: Criterion definition for stabilization (3 measurements):

$(P_{\max} \cdot$	$-P_{\min})/$	' P _{average}	< <i>x</i>

Standard	Scope	Irradiation dose Initial stabilization	Irradiation dose final stabilization	Stabilization criterion x
IEC 61215-1-1	c-Si	2 x 5kWh/m²	not required	1%
IEC 61215-1-2	CdTe	2 x 20kWh/m²	2 x 20kWh/m ²	2%
IEC 61215-1-3	a-Si	2 x 43kWh/m²	2 x 43kWh/m ²	2%
IEC 61215-1-4	CIGS	2 x 20kWh/m²	2 x 10kWh/m²	2%

Degradation, Service Lifetime of PV Modules

TÜV Rheinland estimation shows that crystalline modules of high quality will exhibit annual degradation rates of < 0.3%. Published degradation rates for different module technologies. 1 exposed before 2000, 2 exposed after 2000

[1] Photovoltaic Degradation Rates — An Analytical Review Dirk C. Jordan et al., Journal Article NREL/JA-5200-51664 (2012)

Accurate Power Output at STC after Stabilization

Soiling **Example Arizona**

Cleaning measures increase O&M cost significantly.

TÜVRheinland® Precisely Right.

Soiling Field Study – Chennai, India; inclination angle = 15°

- 3-months dry season ⇒ 25 % soiling loss observed
- Recovery in rainy season: SLF >99 % in first year, SLF >98 % in second year
- Significant differences in soiling patterns for 1st and 2nd year

Choice of Technology Global Energy Yield Benchmark

Long time behavior of different Technologies, Metastabilities

Industry and Investor Support by CSIR: Energy Yield Testing and comparison (Facilities: Energy yield test bench, Flasher)

Calculate and Compare the Energy Yield Performance of PV Modules

Testing of small grid connected PV-System under local conditions

Test of grid connected systems

- Direct connected
- With battery
- Long time behavior
- Efficiency depend on irradiation and status of battery
- Utilization factor

Industry and Investor Support by CSIR: System tests of grid connected systems with and without batteries (Facilities: System test bench with and without battery)

Research and Industry questions to be answered on PV testing Outlock: Different Climates, Soiling, Sand

Energy Yield Prediction based on Precise Data

IEC 61853-1

measuring points

IEC 61853-2

Incidence angle	IAM
o	0-1
0	•
±10	-
±20	-
±30	-
±40	-
±50	-
±60	•
±65	-
±70	•
±75	•
±80	•
±85	-

TUV PAN File

Efficiencies of base and TUV PAN File

The complete set of measurements leads to more precise energy yield prediction and reduction of risk of over- or underestimation of revenues by several percent.

Type Testing and is Limitations

From IEC 61215 / 61646 / 61730:

"...design qualification and type approval of terrestrial photovoltaic modules suitable for long-term operation in general open air climates, as defined in IEC 60721-2-1...."

Arid area stresses:

- Higher daily and annual irradiance
- Increased UV
- Higher temperatures
- Sandstorms
- Dust
- more operational hours per day

Type Testing and is Limitations

Standard insufficiencies:

- Characterization with focus on different climate (IEC 61853 energy matrix)
- Unrealistic Nominal Operating Cell Temperature (NOCT) at 800 W/m² / 20° C
- Temperature range of tests -45° C to +85°
- Module temperature for stress test 75° C
- Max irradiance for tests 1000 W/m²
- Insufficient UV test
- No sand abrasion test
- Max. temp. determination parameters

	normalized temperatures [°C]			
	backsheet	junction box	terminal	diode
1000 W/m²/ 40 °C	79,3	72,1	70,2	79,6
1100 W/m²/ 50 °C 🤇	102,6	86,6	82,2	92,9

Module and environmental temperatures: Arizona

Type Testing and is Limitations Possible Test Scenario with Adapted Test Parameters

Sand and Dust Sand Abrasion – Test Methods

Adaptation to specific region

- Available standards:
 - MIL 810G Method 510.5
 - DEF STD 00-35
 - IEC 60068-2-68
 - AECTP 300 Method 313

- Different regions were examined and with compared with standard parameters
- Parameters differ from region to region
- The military standard MIL 810G covers most of the conditions quite well
- Until now field experience from long-term exposure in desert regions is limited
- Benchmark tests are useful and available for modules and components

Sand and Dust Sand Abrasion - Experiments

Surface structure of backsheet

- Photos of backsheet in sand blasted areas show surface changes compared to unconditioned areas.
- Effects are visible after 90 minutes
- Until now no final assessment of effects
- Microscopic imaging and cross sectional analysis will bring further information (ongoing work)
- Further modules are currently under test

Summary

 Hot and extreme climate zones impose special requirements to PV system components

- Sand is only one of many stress factors
 - Impact on transmission of glass
 - Impact on backsheet
- Until now there is no adapted standard available
 - A proposal by TÜV Rheinland is available
 - A standard is needed to allow adapted product development

Cleaning and maintenance cost are often underestimated

Thank you for you attention!

rentior

C

24 26.05.2017 Workshop CSIR, May 2017

nar

Image:www.spineuniverse.com

47